EE 435

Lecture 27

Data Converter Performance Characterization



Review from last lecture

What DAC Architectures are Actually Used?

Listing from Texas Instruments March 1 2023

String 168
R-2R 79
Current Source 52
MDAC 23
Current Sink 17
SAR 9
Pipeline 7
Delta Sigma 4
1-Steering 3
Current Steering 2



Review from last lecture

A/D Converters

What types are really used?

Consider catalog parts from one vendor — Analog Devices

Flash 2
SAR 233
Pipelined 242
Sigma-Delta 81

Total 559



Review from last lecture

Performance Characterization of Data Converters

« Static characteristics
— Resolution
— Least Significant Bit (LSB)
— Offset and Gain Errors
— Absolute Accuracy
— Relative Accuracy
— Integral Nonlinearity (INL)
— Differential Nonlinearity (DNL)
— Monotonicity (DAC)
— Missing Codes (ADC)
— Low-f Spurious Free Dynamic Range (SFDR)
— Low-f Total Harmonic Distortion (THD)
— Effective Number of Bits (ENOB)
— Power Dissipation



Review from last lecture

Performance Characterization of Data Converters

« Dynamic characteristics
— Conversion Time or Conversion Rate (ADC)
— Settling time or Clock Rate (DAC)

— Sampling Time Uncertainty (aperture uncertainty or
aperture jitter)

— Dynamic Range

— Spurious Free Dynamic Range (SFDR)

— Total Harmonic Distortion (THD)

— Signal to Noise Ratio (SNR)

— Signal to Noise and Distortion Ratio (SNDR)
— Sparkle Characteristics

— Effective Number of Bits (ENOB)



Performance Characterization of Data Converters

« Static characteristics

Resolution

Least Significant Bit (LSB)

Offset and Gain Errors

Absolute Accuracy

Relative Accuracy

Integral Nonlinearity (INL)

Differential Nonlinearity (DNL)
Monotonicity (DAC)

Missing Codes (ADC)

Low-f Spurious Free Dynamic Range (SFDR)
Low-f Total Harmonic Distortion (THD)
Effective Number of Bits (ENOB)
Power Dissipation

R mn



Resolution

Number of distinct analog levels in a DAC
Number of digital output codes in ADC
In most cases this is a power of 2

If a converter can resolve 2" levels, then we term it an n-bit
converter

— 2" analog outputs for an n-bit DAC
— 2"-1 transition points for an n-bit ADC

Resolution is often determined by architecture and thus not
measured

Effective resolution can be defined and measured (but usualy isn’t)

— If N, levels can be resolved for an DAC then n EQzlogNX
log2

logN,,
log2

— If N,-1 transition points in an ADC, then NEQ™



Least Significant Bit
Assume N = 2n

Generally Defined by Manufacturer to be
X s5=Xrer/N

Effective Value of LSB can be Measured

(but usually isn’t)

For DAC: X, g is equal to the maximum increment in the output for a single
bit change in the Boolean input

For ADC: X sz IS equal to the maximum distance between two adjacent
transition points




Offset For DAC the offsetis (assuming 0 is ideal value of L 1(<O0,...0>)

LouT ((0....,0))
A Tour
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Offset

(If ideal value of X5 ,1(<0,...0>) # 0, offset is shift from ideal value at <0,...0>)



Offset (for DAC)

Offset

l l >
T Co G G G G G G G g

« Offset strongly (totally) dependent upon performance at a single point

* Probably more useful to define relative to a fit of the data



Offset (or pac)

A Lour

xREF

>

I I - -
T " XIN
Offset relative to fit of data

Though usually more useful, not standard (more challenging to test)



Gain and Gain Error
For DAC

Gain
Error

Actual °
Output
®

] .

Co Cy C, Cs Cs Cs Ce C; 5’(| N

Gain error determined after offset is subtracted from output



Offset

For ADC the offset IS (assuming &,z is the ideal first transition point)

Xr1-L | sB
X LsB ) -In LSB
A XouT

C; + —
Ce }—!
Cs + 1|—!
Cs + 1|—!
Cs + 1|—!
C T }—!
Ci —_—

xLSB I xIN
Co —_—

X1
4>| kxOFFSET xREF

(If ideal first transition point is not &, o, Offset is shift from ideal)



Offset

For ADC the offset is

A Xout
Cr +
Co +
Cs
Cs +
Cs —
|
|
C T 1I_'
Ci —_—
Xisp
Co —t—rb I
X1y
4’| }47 XorrseT

« Offset strongly (totally) dependent upon performance at a single point

» Probably more useful to define relative to a fit of the data



Offset

For ADC the offset is

A XouT
1 —_—

Fit Line

Offset relative to fit of data



Gain and Gain Error
For ADC

A XouT

Actual Output

Gain
Error

XIN

| >

XREF

Gain error determined after offset is subtracted from output



Gain and Offset Errors

Fit line would give better indicator of error in gain but less practical to
obtain in test

Gain and Offset errors of little concern in many applications

Performance characteristic of interest often nearly independent of gain
and offset errors

Can be trimmed in field if gain or offset errors exist.



Integral Nonlinearity (DAC)

Nonideal DAC

A Lout
xREF__
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O —e
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Integral Nonlinearity (DAC)

Nonideal DAC

A %OUT

Xrer |
° /

®
End Point ° /

Fit LIne
L o (k)

!

ZLor (k)= mk+ZoyT (0)

X out (N-1)-L oyt (0)
N-1

m=




Integral Nonlinearity (DAC)

Nonideal DAC

A Lout
Xrer[—

® ./
Lout(K)-Lor(k) ! / /

] :

Ve o & & C G G G %on

INL=Zou (k) -Zor ()

INL= max {|INL
OskSN-l{‘ k‘}




Integral Nonlinearity (DAC)

Nonideal DAC

A Xout
o

Q//
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Integral Nonlinearity (DAC)

Nonideal DAC s
INL often expressed in LSB l ] e
|NLk:xOUT(k)'xOF(k) g 1
LSB ‘
INL= max j(INL -

* INL is often the most important parameter of a DAC

* INL, and INL,,_, are O (by definition)

« There are N-2 elements in the set of INL, that are of concern

* INL is almost always nominally O (i.e. designers try to make it 0)

* INL is a random variable at the design stage

* INL, is a random variable for 0<k<N-1

* INL, and INL,,; are almost always correlated for all k,] (not incl 0, N-1)

« Fit Line is a random variable

* INL is the N-2 order statistic of a set of N-2 correlated random variables



Integral Nonlinearity (DAC)

xOUT

Nonideal DAC N

-‘LREF
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At design stage, INL characterized by standard deviation of the random variable
Closed-form expressions for INL almost never exist because PDF of order
statistics of correlated random variables is extremely complicated

Simulation of INL very time consuming if n is very large (large sample size

required to establish reasonable level of confidence)
- Model parameters become random variables
- Process parameters affect multiple model parameters causing model parameter correlation
- Simulation times can become very large

INL can be readily measured in laboratory but often dominates test costs
because of number of measurements needed when n is large

Expected value of INL, at k=(N-1)/2 is largest for many architectures
Major effort in DAC design is in obtaining acceptable INL yield !



How many bits in this DAC?
How many bits in this ADC?

oo\

X ) DAC -  Xour
IN 1/2 8 -] xOUT xm__» ADC 12>

Could even have random number generator generating 4 LSBs in this ADC

Manufacturers can “play games” with characterizing data converters

That is one of the major reasons it is not sufficient to simply specify the
number of bits of resolution to characterize data converters !



ENOB of DAC

xOUT

Nonideal DAC e
-

Z
L
]

Concept of Equivalent Number of Bits (ENOB) is to assess performance of an
actual DAC to that of an ideal DAC at an “equivalent” resolution level

Several different definitions of ENOB exist for a DAC
Here will define ENOB as determined by the actual INL performance

Will use subscript to define this ENOB, e.g. ENOB .



ENOB,,, of DAC

Nonideal DAC s Lour
Premise: A good DAC is often designed ™| ‘//
so that the INL is at most Y2 LSB. Thus N
will assume that if an n-bit DAC has an INL |~
INL of %2 LSB that the ENOB,, =n.
Hence, for “good” DAC INL 1,1 _ 1 ] ‘
VREF 2 2 2" Co Il C. C G GCs GCs G )~(=
IN

where INL is in volts
Thus define the effective number of bits, ng by the expression

INL 1 1 1

= —_— ju— V
VREF 2 ° 2nEFF 2nEFF +1 nEFF = ENOBINL = IOQZ( ||Ii|E|f j —

Thus, if an n-bit DAC has an INL of ¥2 LSB

2r~|VLSB

V
ENOB,, =log, (ﬁj —-1=log, v

LSB

2

~1=log, (2"*)-1=n




ENOB,,, of DAC

xOUT

Nonideal DAC e
-

Note: With this definition, an n-bit DAC could actually have an ENOB,,, larger than n



Integral Nonlinearity (ADC

Integral Non-Linearity (INL)

Integral Mon-Linearity
Conversion

7 Adjusted Transfer N
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Input Voltage in LSB

Integral Non-Linearity (INL) is defined as the
sum from the first to the current conversion

- (integral) of the non-linearity at each code

(Code DNL). For example, if the sum of the
DNL up to a particular point is 1LSB, it means
the total of the code widths to that point is
1LSB greater than the sum of the ideal code
widths. Therefore, the current point will
convert one code lower than the ideal
conversion.

In more fundamental terms, INL represents
the curvature in the Actual Transfer Function

relative to a baseline transfer function_ar the

difference between the current and the ideal transition voltages. There are
three primary definitions of INL in common use. They all have the same
fundamental definition except they are measured against different transfer
functions. This fundamental definition is:

Code INL = V{Current Transition) — V{Baseline Transition)
INL = Max(Code INL)

ADC Definitions and Specifications

For More Information On This Product,
Go to: www.freescale.com

Actually probably more than 3



Integral Nonlinearity (ADC)

Nonideal ADC

A XouT

I 1
X1 Lo X3 Xra Xre

Transition points are not uniformly spaced !

More than one definition for INL exists !
Will give two definitions here



Integral Nonlinearity (ADC)

Nonideal ADC

End Point
T Fit LIne \
Sliss T XINE (2N)

-%REF
Consider end-point fit line with interpreted output axis
X
XINF(-(IIN):mxIN"'( LZSB 'mlej

(N-2)X | s
X17-L11

m=




Integral Nonlinearity (ADC)

Nonideal ADC
Continuous-input based INL definition

End Point
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INL=  max INL
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Integral Nonlinearity (ADC)

Nonideal ADC

Continuous-input based INL definition
LNy
Xrer T
T s T .

End Point

O%ise 7 Fit Line
5-%LSB T

A4 sp T
3iss T
2 s T

Xise T

XiNF (TN )

Often expressed in LSB

INL(mN):f’ﬁN (‘(lihg—L);lBNF (‘(IIN)

INL=  max INL
O<Hn <Xrer {‘ (xlN )‘}



Integral Nonlinearity (ADC)

Nonideal ADC
LN

Xrer T
T se T
6Xiss T
Sqise T
4, sg T
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With this definition of INL, the INL of an ideal ADC is X spl2 (for X=X )

This is effective at characterizing the overall nonlinearity of the ADC but
does not vanish when the ADC is ideal and the effects of the breakpoints

are not explicit

This “nonlinearity” may better be viewed as a quantization error rather

than a nonlinearity



Integral Nonlinearity (ADC)

Nonideal ADC
Break-point INL definition (most popular)

A XouT
c, 4 _—
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Place N-3 uniformly spaced points between X; and X, designated ey,
INLy =21 -TeTK 1<k <N-2

INL= max {INL]}
2<k<N-2



Integral Nonlinearity (ADC)

Nonideal ADC

Break-point INL definition (assuming all break points present)
A XouT

O O O O O o o o
o [a N w I a o ~

ety Xerz Xers Xera Xers Xere Xerr

Often expressed in LSB

INLk:ka_xFT' 1<k <N-2
X sB
INL="max {/INLg|}
2<k<N-2

For an ideal ADC, INL is ideally O



Integral Nonlinearity (ADC)

Nonideal ADC
Break-point INL definition

INL =Tk Tl 1<k <N-2 -
XsB .

INL= max {INL]} .
2<k<N-2 C

INL is often the most important parameter of an ADC

INL, and INL,_; are O (by definition)

There are N-3 elements in the set of INL, that are of concern

INL is a random variable at the design stage

INL, is a random variable for O<k<N-1

INL, and INL,,; are correlated for all k,j (notinci 0, N-1) fOr most architectures

Fit Line (for cont INL) and uniformly spaced break pts (oreakpoint INL) are random
variables

INL is the N-3 order statistic of a set of N-3 correlated random variables (oreakpoint
INL)



Integral Nonlinearity (ADC)

Nonideal ADC
Break-point INL definition

|NLk:m 1<k <N-2
X s
INL="max {/INLg]}
2<k<N-2

Xerr Xerz Lrrz Xrra XLers Lere Lerr

» At design stage, INL characterized by standard deviation of the random variable
» Closed-form expressions for INL almost never exist because PDF of order
statistics of correlated random variables is extremely complicated

« Simulation of INL very time consuming if n is very large (large sample size required

to establish reasonable level of confidence)
-Model parameters become random variables
-Process parameters affect multiple model parameters causing model parameter correlation
-Simulation times can become very large



Integral Nonlinearity (ADC)

Nonideal ADC
Break-point INL definition

Xout

O O 0 O O O O 0O
S RSN & IS a ) N

INLK:M 1<k <N-2
X s
INL="max {/INLg]}
2<k<N-2

Measuring INL in the laboratory based upon this definition would be totally
impractical if n is very large

A “Code Density” approach is often used in the laboratory to estimate the
transition points without actually measuring them to dramatically reduce test
costs

INL can be readily measured in laboratory using Code Density approach but
even this approach often dominates test costs because of number of
measurements needed when n is large

INL is a random variable and is a major contributor to yield loss in many designs
Expected value of INL, at k=(N-1)/2 is largest for many architectures

This definition does not account for missing transitions

Major effort in ADC design is in obtaining an acceptable yield



INL-based ENOB

Consider initially the continuous INL definition for an ADC where the INL of an

ideal ADC is X, gg/2 1 Xeer
INLey, = —— =
2 2"
Assume INL= 0X| spr

where X sgr IS the LSB based upon the defined resolution, ng

INL=C2REF _ XREF
2nR 2neq+1

Thus
L 1

Mg oNeg +1
But ENOB,y, =N,

Hence
ENOB =ngr-1-logy(v)



INL-based ENOB
ENOB = ng-1-log; (v)

Consider an ADC with specified resolution of n (dropped the subscript R) and INL of v LSB

D, ENOB
. n

1 n-1
2 n-2
4 n-3
38 n-4
16 n-5

ENOB could be larger than ny as well though with less transition levels



Performance Characterization of Data Converters

« Static characteristics

Resolution

Least Significant Bit (LSB)

Offset and Gain Errors

Absolute Accuracy

Relative Accuracy

Integral Nonlinearity (INL)

Differential Nonlinearity (DNL)
Monotonicity (DAC)

Missing Codes (ADC)

Low-f Spurious Free Dynamic Range (SFDR)
Low-f Total Harmonic Distortion (THD)
Effective Number of Bits (ENOB)
Power Dissipation
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Stay Safe and Stay Healthy !






