EE 435

Lecture 27

Data Converter Performance Characterization

Review from last lecture

What DAC Architectures are Actually Used?

Listing from Texas Instruments March 1 2023

String	168
R-2R	79
Current Source	52
MDAC	23
Current Sink	17
SAR	9
Pipeline	7
Delta Sigma	4
1-Steering	3
Current Steering	2

A/D Converters

What types are really used?

Consider catalog parts from one vendor – Analog Devices

Flash 2 SAR 233 Pipelined 242 Sigma-Delta 81

Total 559

Review from last lecture

Performance Characterization of Data Converters

- Static characteristics
 - Resolution
 - Least Significant Bit (LSB)
 - Offset and Gain Errors
 - Absolute Accuracy
 - Relative Accuracy
 - Integral Nonlinearity (INL)
 - Differential Nonlinearity (DNL)
 - Monotonicity (DAC)
 - Missing Codes (ADC)
 - Low-f Spurious Free Dynamic Range (SFDR)
 - Low-f Total Harmonic Distortion (THD)
 - Effective Number of Bits (ENOB)
 - Power Dissipation

Review from last lecture

Performance Characterization of Data Converters

- Dynamic characteristics
 - Conversion Time or Conversion Rate (ADC)
 - Settling time or Clock Rate (DAC)
 - Sampling Time Uncertainty (aperture uncertainty or aperture jitter)
 - Dynamic Range
 - Spurious Free Dynamic Range (SFDR)
 - Total Harmonic Distortion (THD)
 - Signal to Noise Ratio (SNR)
 - Signal to Noise and Distortion Ratio (SNDR)
 - Sparkle Characteristics
 - Effective Number of Bits (ENOB)

Performance Characterization of Data Converters

Static characteristics

- → Resolution
- → Offset and Gain Errors
 - Absolute Accuracy
 - Relative Accuracy
- - Differential Nonlinearity (DNL)
 - Monotonicity (DAC)
 - Missing Codes (ADC)
 - Low-f Spurious Free Dynamic Range (SFDR)
 - Low-f Total Harmonic Distortion (THD)
 - Effective Number of Bits (ENOB)
 - Power Dissipation

Resolution

- Number of distinct analog levels in a DAC
- Number of digital output codes in ADC
- In most cases this is a power of 2
- If a converter can resolve 2ⁿ levels, then we term it an n-bit converter
 - 2ⁿ analog outputs for an n-bit DAC
 - 2ⁿ-1 transition points for an n-bit ADC
- Resolution is often determined by architecture and thus not measured
- Effective resolution can be defined and measured (but usualy isn't)_
 - If N_x levels can be resolved for an DAC then $n_{EQ} = \frac{\log N_x}{\log 2}$
 - If N_x -1 transition points in an ADC, then $n_{EQ} = \frac{\log N_x}{\log 2}$

Least Significant Bit

Assume
$$N = 2^{n}$$

Generally <u>Defined</u> by Manufacturer to be $\mathcal{X}_{LSB} = \mathcal{X}_{REF} / N$

Effective Value of LSB can be Measured

For DAC: \mathcal{X}_{LSB} is equal to the <u>maximum</u> increment in the output for a single bit change in the Boolean input

For ADC: \mathcal{X}_{LSB} is equal to the <u>maximum</u> distance between two adjacent transition points

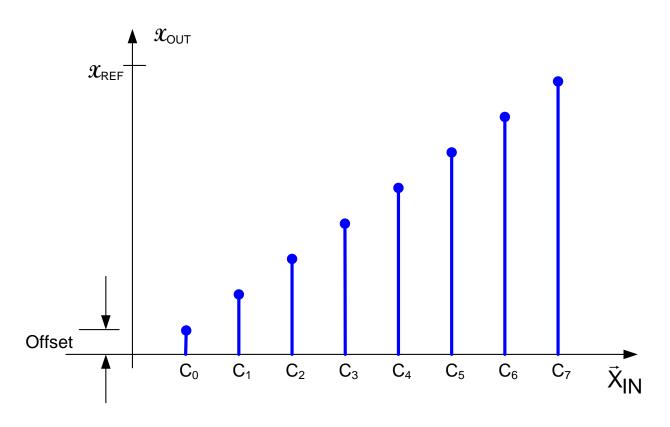
Offset

For DAC the offset is (assuming 0 is ideal value of $\mathcal{X}_{\text{OUT}}(<0,...0>)$

$$\mathcal{X}_{\text{OUT}}$$
 (<0,...,0>) - absolute $\underline{\mathcal{X}_{\text{OUT}}}$ - in LSB - in LSB

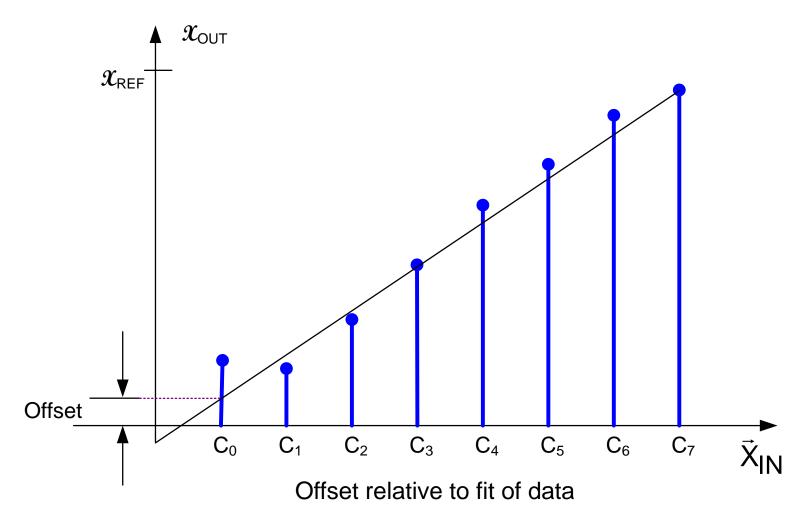
(If ideal value of $\mathcal{X}_{OUT}(<0,...0>) \neq 0$, offset is shift from ideal value at <0,...0>)

Offset (for DAC)



- Offset strongly (totally) dependent upon performance at a single point
- Probably more useful to define relative to a fit of the data

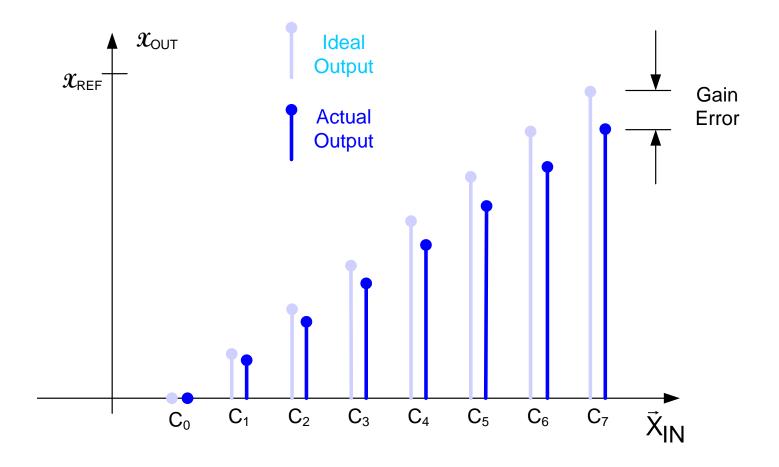
Offset (for DAC)



Though usually more useful, not standard (more challenging to test)

Gain and Gain Error

For DAC



Gain error determined after offset is subtracted from output

Offset

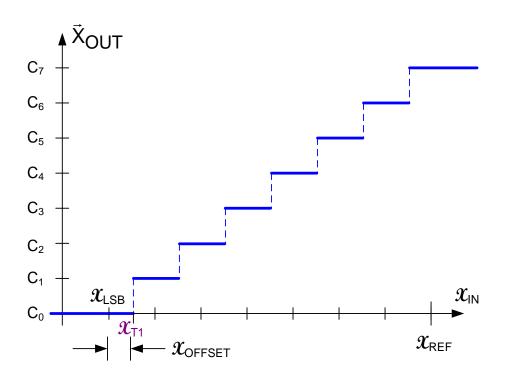
For ADC the offset is (assuming \mathcal{X}_{LSB} is the ideal first transition point)

$$x_{\text{T1}} - x_{\text{LSB}}$$
 - absolute $x_{\text{T1}} - x_{\text{LSB}}$ - in LSB x_{LSB} - in LSB x_{C2} - x_{C3} - x_{C4} - x_{C3} - x_{C4} - x_{C5} - x_{C6} - x_{C7} - x_{C8} - x_{C9} - $x_{\text{C$

(If ideal first transition point is not \mathcal{X}_{LSB} , offset is shift from ideal)

Offset

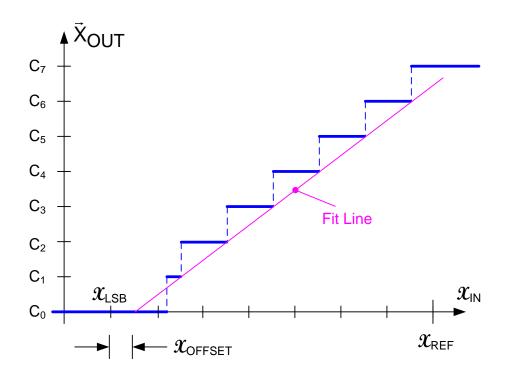
For ADC the offset is



- Offset strongly (totally) dependent upon performance at a single point
- Probably more useful to define relative to a fit of the data

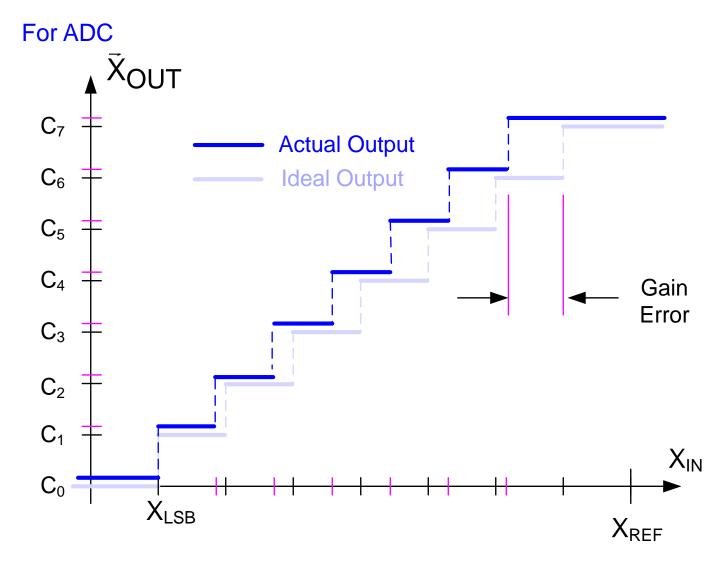
Offset

For ADC the offset is



Offset relative to fit of data

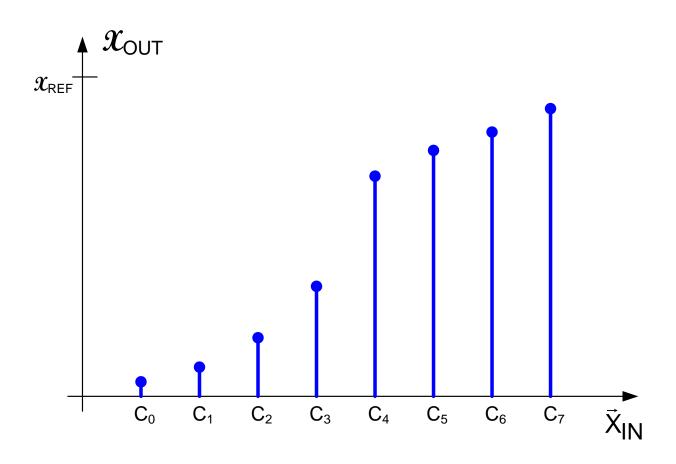
Gain and Gain Error

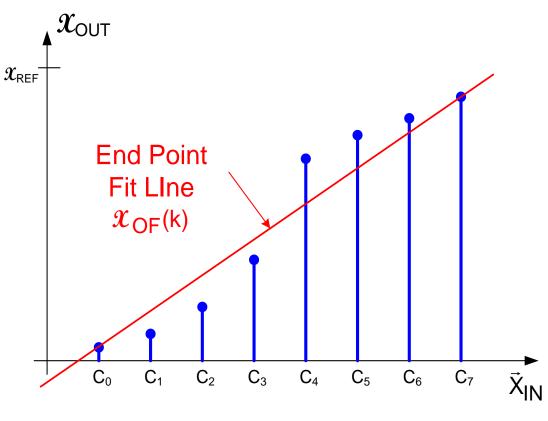


Gain error determined after offset is subtracted from output

Gain and Offset Errors

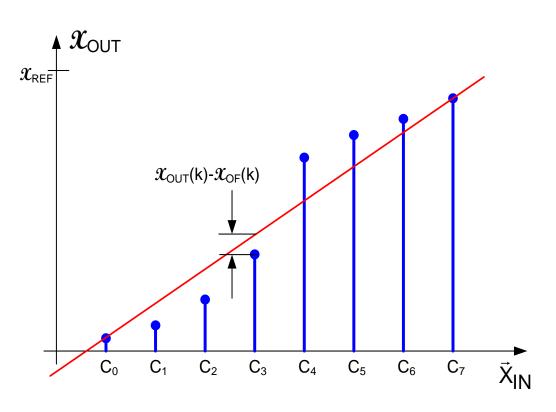
- Fit line would give better indicator of error in gain but less practical to obtain in test
- Gain and Offset errors of little concern in many applications
- Performance characteristic of interest often nearly independent of gain and offset errors
- Can be trimmed in field if gain or offset errors exist.





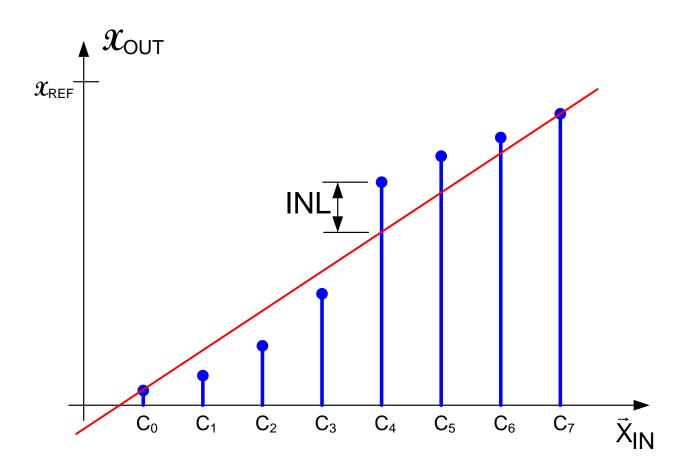
$$\mathcal{X}_{OF}(k) = mk + \mathcal{X}_{OUT}(0)$$

$$m = \frac{\mathcal{X}_{OUT}(N-1) - \mathcal{X}_{OUT}(0)}{N-1}$$



$$INL_{k} = \mathcal{X}_{OUT}(k) - \mathcal{X}_{OF}(k)$$

$$INL = \max_{0 \le k \le N-1} \{ |INL_k| \}$$

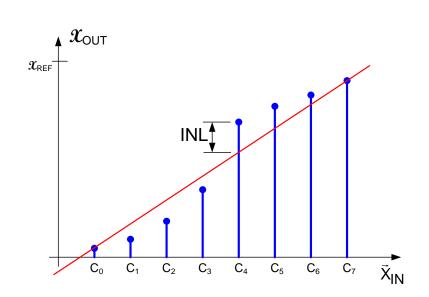


Nonideal DAC

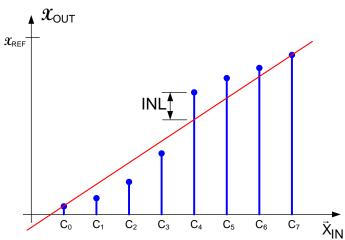
INL often expressed in LSB

$$\mathsf{INL}_{\mathsf{k}} = \frac{\mathcal{X}_{\mathsf{OUT}}(\mathsf{k}) \text{-} \mathcal{X}_{\mathsf{OF}}(\mathsf{k})}{\mathcal{X}_{\mathsf{LSB}}}$$

$$INL = \max_{0 \le k \le N-1} \{ |INL_k| \}$$

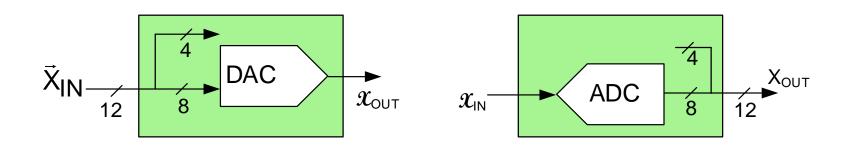


- INL is often the most important parameter of a DAC
- INL₀ and INL_{N-1} are 0 (by definition)
- There are N-2 elements in the set of INL_k that are of concern
- INL is almost always nominally 0 (i.e. designers try to make it 0)
- INL is a random variable at the design stage
- INL_k is a random variable for 0<k<N-1
- INL_k and INL_{k+j} are almost always correlated for all k,j (not incl 0, N-1)
- Fit Line is a random variable
- INL is the N-2 order statistic of a set of N-2 correlated random variables



- At design stage, INL characterized by standard deviation of the random variable
- Closed-form expressions for INL almost never exist because PDF of order statistics of correlated random variables is extremely complicated
- Simulation of INL very time consuming if n is very large (large sample size required to establish reasonable level of confidence)
 - Model parameters become random variables
 - Process parameters affect multiple model parameters causing model parameter correlation
 - Simulation times can become very large
- INL can be readily measured in laboratory but often dominates test costs because of number of measurements needed when n is large
- Expected value of INL_k at k=(N-1)/2 is largest for many architectures
- Major effort in DAC design is in obtaining acceptable INL yield!

How many bits in this DAC? How many bits in this ADC?

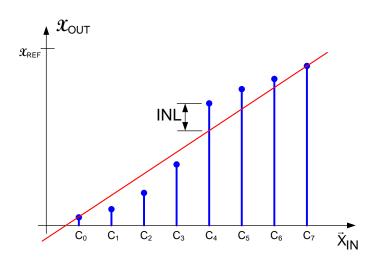


Could even have random number generator generating 4 LSBs in this ADC

Manufacturers can "play games" with characterizing data converters

That is one of the major reasons it is not sufficient to simply specify the number of bits of resolution to characterize data converters!

ENOB of DAC



- Concept of Equivalent Number of Bits (ENOB) is to assess performance of an actual DAC to that of an ideal DAC at an "equivalent" resolution level
- Several different definitions of ENOB exist for a DAC
- Here will define ENOB as determined by the actual INL performance
- Will use subscript to define this ENOB, e.g. ENOB_{INL}

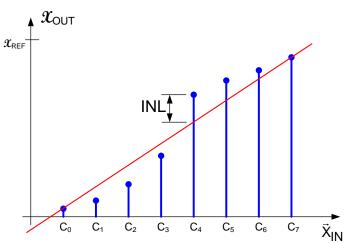
ENOB_{INI} of DAC

Nonideal DAC

Premise: A good DAC is often designed so that the INL is at most ½ LSB. Thus will assume that if an n-bit DAC has an INL of $\frac{1}{2}$ LSB that the ENOB_{INL}=n.

Hence, for "good" DAC $\frac{INL}{V_{RFF}} = \frac{1}{2} \cdot \frac{1}{2^n} = \frac{1}{2^{n+1}}$ where INL is in volts

$$\frac{INL}{V_{RFF}} = \frac{1}{2} \bullet \frac{1}{2^n} = \frac{1}{2^{n+1}}$$



Thus define the effective number of bits, n_{EFF} by the expression

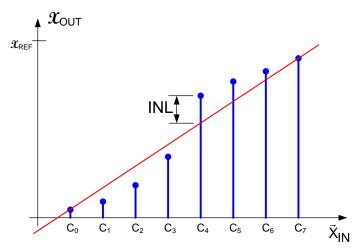
$$\frac{\mathit{INL}}{\mathit{V}_{\mathit{REF}}} = \frac{1}{2} \bullet \frac{1}{2^{\mathit{n}_{\mathit{EFF}}}} = \frac{1}{2^{\mathit{n}_{\mathit{EFF}}+1}} \qquad \qquad \qquad \qquad \qquad n_{\mathit{EFF}} = \mathit{ENOB}_{\mathit{INL}} = \log_2 \left(\frac{\mathit{V}_{\mathit{REF}}}{\mathit{INL}} \right) - 1$$

Thus, if an n-bit DAC has an INL of ½ LSB

$$ENOB_{INL} = \log_2\left(\frac{V_{REF}}{INL}\right) - 1 = \log_2\left(\frac{2^n V_{LSB}}{\frac{V_{LSB}}{2}}\right) - 1 = \log_2\left(2^{n+1}\right) - 1 = n$$

ENOB_{INL} of DAC

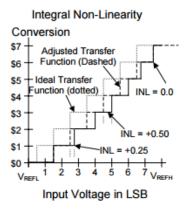
Nonideal DAC



$$ENOB_{INL} = log_2 \left(\frac{V_{REF}}{INL} \right) - 1$$

Note: With this definition, an n-bit DAC could actually have an ENOB_{INI} larger than n

Integral Non-Linearity (INL)



Integral Non-Linearity (INL) is defined as the sum from the first to the current conversion (integral) of the non-linearity at each code (Code DNL). For example, if the sum of the DNL up to a particular point is 1LSB, it means the total of the code widths to that point is 1LSB greater than the sum of the ideal code widths. Therefore, the current point will convert one code lower than the ideal conversion.

In more fundamental terms, INL represents the curvature in the Actual Transfer Function relative to a baseline transfer function, or the

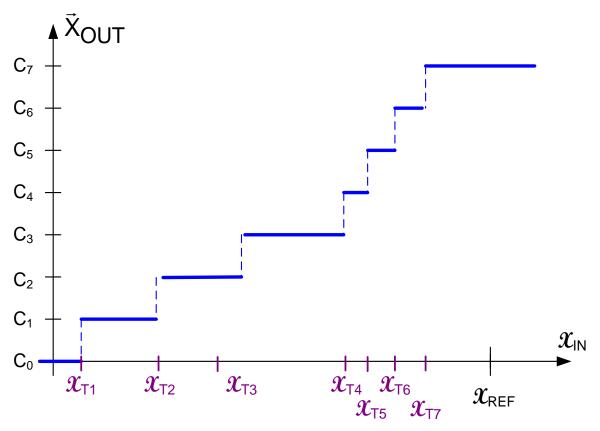
difference between the current and the ideal transition voltages. There are three primary definitions of INL in common use. They all have the same fundamental definition except they are measured against different transfer functions. This fundamental definition is:

Code INL = V(Current Transition) – V(Baseline Transition)
INL = Max(Code INL)

ADC Definitions and Specifications

For More Information On This Product, Go to: www.freescale.com

Nonideal ADC



Transition points are not uniformly spaced!

More than one definition for INL exists!

Will give two definitions here



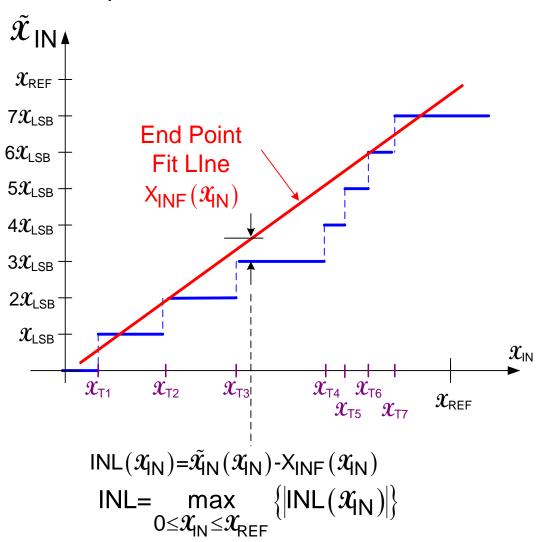
Consider end-point fit line with interpreted output axis

$$X_{INF}(\mathcal{X}_{IN}) = m\mathcal{X}_{IN} + \left(\frac{\mathcal{X}_{LSB}}{2} - m\mathcal{X}_{T1}\right)$$

$$m = \frac{(N-2)\mathcal{X}_{LSB}}{\mathcal{X}_{T7} - \mathcal{X}_{T1}}$$

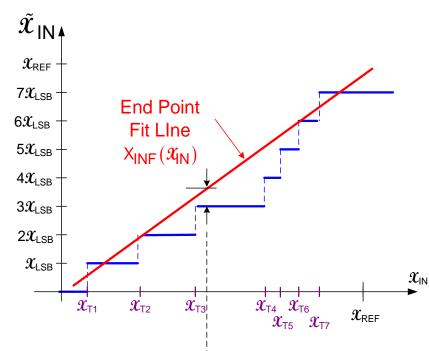
Nonideal ADC

Continuous-input based INL definition



Nonideal ADC

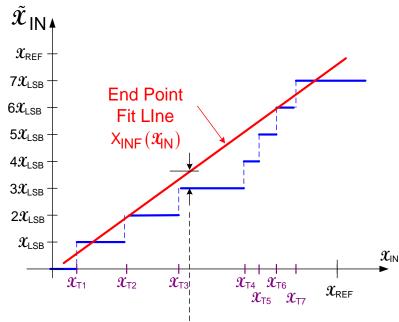
Continuous-input based INL definition



Often expressed in LSB

$$INL(\mathcal{X}_{IN}) = \frac{\tilde{\mathcal{X}}_{IN}(\mathcal{X}_{IN}) - X_{INF}(\mathcal{X}_{IN})}{\mathcal{X}_{LSB}}$$

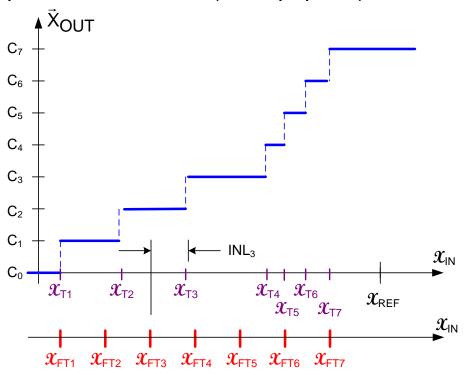
$$INL = \max_{0 \le \mathcal{X}_{IN} \le \mathcal{X}_{REF}} \{|INL(\mathcal{X}_{IN})|\}$$



- With this definition of INL, the INL of an ideal ADC is $\mathcal{X}_{LSB}/2$ (for $\mathcal{X}_{T1}=\mathcal{X}_{LSB}$)
- This is effective at characterizing the overall nonlinearity of the ADC but does not vanish when the ADC is ideal and the effects of the breakpoints are not explicit
- This "nonlinearity" may better be viewed as a quantization error rather than a nonlinearity

Nonideal ADC

Break-point INL definition (most popular)

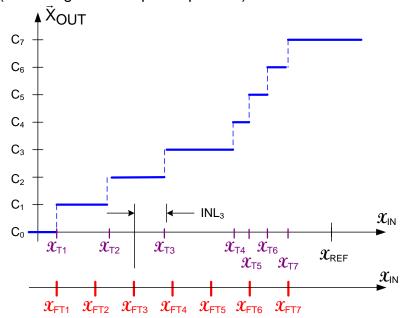


Place N-3 uniformly spaced points between X_{T1} and $X_{T(N-1)}$ designated \mathcal{X}_{FTk} $1 \leq k \leq N-2$

$$INL = \max_{2 \le k \le N-2} \left\{ |INL_k| \right\}$$

Nonideal ADC

Break-point INL definition (assuming all break points present)



Often expressed in LSB

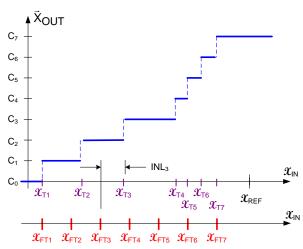
$$INL_k = \frac{\mathcal{X}_{Tk} - \mathcal{X}_{FTl}}{\mathcal{X}_{LSB}} \qquad 1 \leq k \leq N-2$$

$$INL = \max_{\substack{2 \leq k \leq N-2 \\ 2 \leq k \leq N-2}} \{|INL_k|\}$$
 For an ideal ADC, INL is ideally 0

Nonideal ADC

Break-point INL definition

$$\begin{aligned} \text{INL}_{k} &= \frac{\mathcal{X}_{Tk} - \mathcal{X}_{FTI}}{\mathcal{X}_{LSB}} & 1 \leq k \leq N-2 \\ \\ \text{INL} &= \max_{2 \leq k \leq N-2} \left\{ ||\text{INL}_{k}| \right\} \end{aligned}$$



- INL is often the most important parameter of an ADC
- INL₁ and INL_{N-1} are 0 (by definition)
- There are N-3 elements in the set of INL_k that are of concern
- INL is a random variable at the design stage
- INL_k is a random variable for 0<k<N-1
- INL_k and INL_{k+i} are correlated for all k,j (not incl 0, N-1) for most architectures
- Fit Line (for cont INL) and uniformly spaced break pts (breakpoint INL) are random variables
- INL is the N-3 order statistic of a set of N-3 correlated random variables (breakpoint INL)

Nonideal ADC

Break-point INL definition

$$INL_k = \frac{\mathcal{X}_{Tk} - \mathcal{X}_{FTl}}{\mathcal{X}_{LSB}}$$
 $1 \le k \le N-2$

$$INL = \max \{|INL_k|\}$$



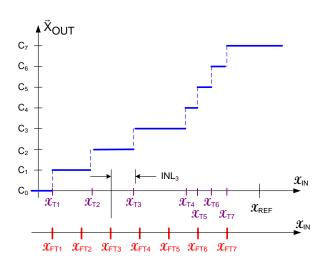
- At design stage, INL characterized by standard deviation of the random variable
- Closed-form expressions for INL almost never exist because PDF of order statistics of correlated random variables is extremely complicated
- Simulation of INL very time consuming if n is very large (large sample size required to establish reasonable level of confidence)
 - -Model parameters become random variables
 - -Process parameters affect multiple model parameters causing model parameter correlation
 - -Simulation times can become very large

Nonideal ADC

Break-point INL definition

$$INL_{k} = \frac{\mathcal{X}_{Tk} - \mathcal{X}_{FTI}}{\mathcal{X}_{LSB}} \qquad 1 \le k \le N-2$$

$$INL = \max_{2 \le k \le N-2} \{ |INL_k| \}$$



- Measuring INL in the laboratory based upon this definition would be totally impractical if n is very large
- A "Code Density" approach is often used in the laboratory to estimate the transition points without actually measuring them to dramatically reduce test costs
- INL can be readily measured in laboratory using Code Density approach but even this approach often dominates test costs because of number of measurements needed when n is large
- INL is a random variable and is a major contributor to yield loss in many designs
- Expected value of INL_k at k=(N-1)/2 is largest for many architectures
- This definition does not account for missing transitions
- Major effort in ADC design is in obtaining an acceptable yield

INL-based ENOB

Consider initially the continuous INL definition for an ADC where the INL of an ideal ADC is $X_{LSB}/2$ 1 X_{DEE}

 $INL_{EQ} = \frac{1}{2} \frac{X_{REF}}{2^{n_{EQ}}}$

Assume

INL=
$$vX_{LSBR}$$

where X_{LSBR} is the LSB based upon the defined resolution, n_R

$$INL = \frac{vX_{REF}}{2^{n_R}} = \frac{X_{REF}}{2^{n_{eq}+1}}$$

Thus

$$\frac{\upsilon}{2^{n_R}} = \frac{1}{2^{n_{eq}+1}}$$

But ENOB_{INL}=n_{eq}

Hence

ENOB =
$$n_R$$
-1- $log_2(v)$

INL-based ENOB

ENOB =
$$n_R$$
-1- $log_2(v)$

Consider an ADC with specified resolution of n (dropped the subscript R) and INL of v LSB

υ	ENOB
1/2	n
1	n-1
2	n-2
4	n-3
8	n-4
16	n-5

ENOB could be larger than n_R as well though with less transition levels

Performance Characterization of Data Converters

- Static characteristics
 - Resolution
 - Least Significant Bit (LSB)
 - Offset and Gain Errors
 - Absolute Accuracy
 - Relative Accuracy
 - Integral Nonlinearity (INL)
- Differential Nonlinearity (DNL)
- → Monotonicity (DAC)
- → Missing Codes (ADC)
 - Low-f Spurious Free Dynamic Range (SFDR)
 - Low-f Total Harmonic Distortion (THD)
 - Effective Number of Bits (ENOB)
 - Power Dissipation

Stay Safe and Stay Healthy!

End of Lecture 27